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In this “info-plosion” era, recommendation systems (or recommenders) play a significant role in finding in- 

teresting items in the surge of online digital activities and e-commerce. Several techniques have been widely 

applied for recommendation systems, but the cold-start and sparsity problems remain a major challenge. 

The cold-start problem occurs when generating recommendations for new users and items without sufficient 

information. Sparsity refers to the problem of having a large amount of users and items but with few transac- 

tions or interactions. In this article, a novel cross-domain recommendation model, Cross-Domain Evolution 

Learning Recommendation (abbreviated as CD-ELR), is developed to communicate the information from dif- 

ferent domains in order to tackle the cold-start and sparsity issues by integrating matrix factorization and 

recurrent neural network. We introduce an evolutionary concept to describe the preference variation of users 

over time. Furthermore, several optimization methods are developed for combining the domain features for 

precision recommendation. Experimental results show that CD-ELR outperforms existing state-of-the-art 

recommendation baselines. Finally, we conduct experiments on several real-world datasets to demonstrate 

the practicability of the proposed CD-ELR. 
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 INTRODUCTION 

n the last decade, partly due to the exponential growth of data and information on the World

ide Web (W W W) , we have witnessed the birth of an information-explosion (info-plosion) era.
ithout any doubt, it is critical to extract/mine useful information relevant to users’ interests ef-

ciently and effectively, which is often achieved by recommendation systems (also called recom-
enders). This is particularly obvious for online e-commerce on the W W W. By capturing potential

references of users to find interesting items for them, recommenders have emerged as an essen-
ial part of e-commerce over the years. Many studies [ 26 , 46 , 49 , 54 ] have discussed and proven the
mportance of recommenders in satisfying users’ needs and increasing revenue in e-commerce. 
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We use the successful story of Amazon as an example to show the crucial role played by recom-
endation systems [ 48 ]. A strategy that drives the success of Amazon is to attract customers to

lick on recommended items by providing valuable information of items that match well with the
eeds and preferences of customers. According to a study [ 48 ], up to 35% of Amazon’s sales are
oming from the proprietary product recommendation models, which have played a significant
ole in Amazon’s developed strategy to recommend a set of product items based on a particu-
ar item that a customer is looking for. The similar-context strategy persuades the customer that
he promoted product items in the recommended lists are worth looking into. However, generally
peaking, recommendation systems may suffer from the data sparsity problem and cold-start is-
ues. The data sparsity problem refers to the situation where users’ interests are skewed, i.e., most
licks (feedbacks) are concentrated in a few items while most items only get a few feedbacks. The
old-start problem refers to the situation where the recommendations systems could not make
ffective personalized recommendations for new customers, because there is not sufficient user
istory data to derive personal preferences. 
Several prior studies explore cross-domain recommendation (CDR) to address data sparsity

nd cold-start problems, aiming to transfer the information from a data-rich domain to another
ata-sparse domain. The idea is to use the ratings or feedbacks from the data-rich source domain to
mprove the recommendation effectiveness in the data-sparse target domain. Nevertheless, existing
DR techniques face two critical issues. First, prior CDRs mostly utilize only the information in

he source domain to assist the recommendations in the target domain, i.e., the recommendation
ocuses on unidirectional transfer. We argue that as the source and target domains may both have
seful information to each other, the transfer could be bidirectional. Not only the source may
ssist the target, but also the information from the target may improve the recommendations in
he source. We use a case scenario as an example to explain our argument in detail. 

Case Scenario 1 (Importance of bidirectional CDR): Suppose we have user feedbacks from
he book and music domains, where the book domain contains much richer rating information
han the music domain. Typically, CDR systems transfer the source domain knowledge (i.e., book)
o the target domain (i.e., music) to improve the recommendations in the target domain (i.e., mu-
ic), but not vice versa. As shown in Figure 1 (a), in the book domain, Amy and John prefer the
omance and epic literatures, respectively. Hence, although user feedbacks are sparse in the music
omain, the traditional CDR techniques would increase the probability for recommending roman-
ic music to Amy and classical music to John based on the enhancement from the book domain.
n the contrary, as in the example shown in Figure 1 (b), in the music domain, while Tina likes

omantic music and Tom likes electric music, the information about their preference in music is
ot transferred to books, since the music domain is sparser than the book domain. CDR only learns
he knowledge from the source for use in the target domain, but not vice versa. Intuitively, as the
atterns in the music domain could influence the recommendations of books, romantic and epic
ovels could be recommended to Tina and Tom, respectively, as well. This example shows the

mportance of the bidirectional transfer in cross-domain recommendations. 
In general, user preferences change over time in many real-world applications. The latent fac-

ors discovered from traditional CDR techniques may not properly depict the evolution of user
references due to the lack of the concept of time progress. Moreover, the evolving relationships
mong users and items are pivotal for making recommendations. Such a relationship could indicate
he potential interests of a user to an item over time. Basically, prior CDR methods only discover
he static features of users and items without considering the evolving relationship among them.
onsider the scenario as follows. 
CM Trans. Internet Technol., Vol. 24, No. 1, Article 6. Publication date: February 2024. 



A Novel Cross-Domain Recommendation with Evolution Learning 6:3 

Fig. 1. Example of unidirectional cross-domain recommendation. 

Fig. 2. Example of preference evolution in recommendation. 
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Case Scenario 2 (Preference evolution in recommendation) : As illustrated by the example in
igure 2 , Maria liked to read romance books 10 years ago, such as “Twilight” and “Bet Me.” How-
ver, her reading preference changes as her age increases. Currently, Maria likes to read science
ction such as “Dune” and “A Wrinkle in Time” instead of “The Unhoneymooners,” as shown in
he rating matrix in Figure 2 . If we do not take into account the factor of preference evolution,
he system may recommend Maria both science fiction and romance books, while the latter is no
onger a good recommendation. On the contrary, Ray always likes science fiction literatures and
hus science fiction books should be recommended to him directly, due to Ray’s steady interest
which is also a kind of preference evolution). The example depicts an important role evolving
reference may play in recommendations and thus should be considered in the CDR techniques. 
ACM Trans. Internet Technol., Vol. 24, No. 1, Article 6. Publication date: February 2024. 
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In this article, by extending matrix factorization (MF) and recurrent neural network (RNN)

echniques, a novel recommendation system, called Cross-Domain Evolution-Learning Rec-

mmendation (CD-ELR) , is developed to make personalized recommendations of items to users
ased on the ideas of preference evolution with cross-domain knowledge transfer. We introduce an
volving MF method in CD-ELR to extract user preference and item characteristics with efficient
omputation resource utilization. Then, CD-ELR integrates context awareness into RNN to effi-
iently capture the evolution patterns to predict the user preferred items in the future. The main
ontributions of this study are as follows: 

—We propose an effective approach to transform a large-scale user rating matrix into a
series of smaller feedback matrices based on users’ rating time. Without information loss,
the series of feedback matrices properly express the users’ accumulated rating behaviors.
Clearly, since every feedback matrix is much smaller than the whole rating matrix, less
computation time and memory resource are required for processing. 

—A novel evolving matrix factorization (EMF) method is proposed for matrix decom-
position. Latent user preferences and item characteristics therefore are derived more effi-
ciently. Since there are many customers and product items in real-world applications, the
feedback rating matrix is extremely large, requiring significant computational resources
(i.e., memory usage and execution time, to name a few). Compared with traditional MF-
based methods, the proposed EMF method reduces more than 20% of the computational
resources. 

—By incorporating EMF to extract user preferences and item characteristics, a novel RNN-
based learning model, called Fusion Long Short-Term Memory (F-LSTM) , is developed
to dynamically capture the evolution patterns of user interests with the discovered char-
acteristics in each domain. By considering the discovered latent factors of users and items
in an evolutionary manner, the proposed CD-ELR model can recommend the “right” items
to users at the “right” time. 

—The proposed F-LSTM integrates knowledge extracted from multiple domains. Moreover,
we could effectively consider the knowledge extracted from each domain to find out the
relation between users and items. Via the well-trained F-LSTM model, CD-ELR predicts
future user preferences to precisely recommend related items. 

—Different from prior studies, CD-ELR achieves multidirectional transfer for CDRs. Not only
does the source domain transfer knowledge to the target domain, but the target domain also
enhances the recommendations in the source domain. With the proposed fusion operations,
multiple transfers could be naturally implemented. 

—Extensive experiments are performed on real datasets. Experimental results indicate that
CD-ELR significantly outperforms existing cross-domain recommendation models. Fur-
thermore, the proposed CD-ELR exhibits great generalization and robustness on real
datasets with all considered metrics. 

The rest of the article is organized as follows. Section 2 reviews the Related Work and Section 3
ntroduces the proposed CD-ELR, respectively. Section 4 details the experiments for performance
valuation. Finally, Section 5 concludes the work. 

 RELATED WORK 

.1 Traditional Recommendation 

n this info-explosion era, recommendation systems are an important tool to help users efficiently
nd what they are personally interested in. Due to the ability for tackling the data sparsity and
CM Trans. Internet Technol., Vol. 24, No. 1, Article 6. Publication date: February 2024. 
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old-start problems, model-based collaborative filtering techniques, e.g., MF, are widely employed
o recommend relevant items for users. MF, by decomposing a matrix into the production of sev-
ral matrices (or the sum of some matrices) based on certain constraints, aims to discover some
atent characteristics embedded in the original matrix. Many existing studies focus on effectively
actorizing a given matrix into multiple components of interested entities. Du et al. [ 11 ] integrate
sers’ feedback comments for the learning process to make more precise recommendations. Huang
t al. [ 14 ] propose to jointly perform active feature querying and supervised matrix completion
n order to train an effective classification model with least acquisition. ML-JMF [ 47 ] utilizes a

ulti-label aggregation method to effectively factorize the associated matrices. Wang et al. [ 53 ]
ropose a confidence-aware matrix factorization framework that introduces variance parameters
or users and terms in the MF process. He et al. [ 15 ] propose an MF-based algorithm based on the
lement-wise alternating least squares (eALS) technique to seamlessly update the model while
ew entries are given. PMF [ 43 ] includes the adaptive prior on the model parameters for proba-
ilistic MF on a large and imbalanced database. LPMF [ 35 ] utilizes local optimal points to estimate
he parameters and downgrade the degree of over-fitting in local models. Wang and Ma [ 51 ] pro-
ose an adversarial MF-based method to tackle the missing-at-random and ineffective utilization

ssues in large datasets. Peng et al. [ 40 ] propose a novel non-negative matrix factorization method
o learn local similarity and clusters in a mutually enhanced way. Yeh [ 55 ] introduce a model to
ncrease the performance and reliability of a neural network which could directly enhance the
ecommendation. 

Some prior MF-based studies constrain the decomposition results to non-negative value to ad-
ress the issue of extreme data sparsity in a given rating matrix. RSNMF [ 31 ] regularizes a single
lement in the non-negative update process which depends on individual feature vectors instead
f the whole matrix. Given a target dataset, semi-non-negative MF [ 45 ] aims to derive more effec-
ive low-dimensional representation than traditional clustering methods. Deep Semi-NMF learns
atent features and interprets results based on the property of given dataset. DMF [ 6 ] derives differ-
nt time factorization models by extending the idea of non-negative MF (NMF) [ 23 ] and Linear

ynamics System (LDS) . DynamicMF [ 42 ] automatically captures low-dimensional features for
everal applications. SDMF [ 50 ] first learns real-valued latent features by MF and then derives
inary codes in the DMF framework to preserve the geometrical structures collectively hidden
n users and items learned in a vector space. Koren et al. [ 21 ] describe the characteristics of the
sers and items with two decomposed low-dimensional matrices, and then inner product the two
erived matrices to reconstruct and predict the user ratings. HSBMF [ 37 ] integrates multiple con-
ounding factors for factorizing the matrix to predict the missing salary information in the salary
atrix. Thai-Nghe et al. [ 38 ] make effective recommendations by implicitly including the latent

actors and proposing a tensor factorization method for temporal effects. Abdi et al. [ 1 ] incorpo-
ate contextual information into MF approaches to improve the quality and accuracy for recom-
endation with large-scale datasets. Bin and Sun [ 4 ] propose a new algorithm based on matrix

ecomposition, which takes the reviews among users as auxiliary information. Park et al. [ 39 ] in-
orporate additional bias in MF and discuss the cold-start problem raised in the context of precise
ecommendations. Kawale et al. [ 20 ] apply particle Thompson sampling (PTS) in MF recom-
endation to automatically find the most relevant items and less recommended items. Wu et al.

 54 ] analyze the deviation degree of ratings of users and items, and propose the concept of user
nd item centrality. Yu et al. [ 56 ] generalizes MF by incorporating the side information from user
r item features and derive an efficient alternating minimization procedure for optimization. Ja-
ali and Ester [ 19 ] explore a model-based approach for recommendation in social networks and

ncorporate MF techniques with the mechanism of trust propagation into the model. CoFactor
 24 ] jointly decomposes the user rating and the item co-occurrence matrices jointly with shared
ACM Trans. Internet Technol., Vol. 24, No. 1, Article 6. Publication date: February 2024. 
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atent features. FeatureMF [ 58 ] incorporates item features into the MF framework by projecting
vailable attributes in item features into the same latent space of users and items. Tran et al. [ 46 ]
ropose a regularized multi-embedding method (RME) to simultaneously encapsulate several
mportant pieces of information while deriving decomposition. RI-SGD [ 15 ] factorizes the implicit

atrix with alternating least squares and weight regularization. Stratified SGD (SSGD) [ 13 ], a
ariant of SGD, considers more sufficient conditions to converge by stochastic approximation and
egenerative process. Rendle et al. [ 41 ] apply the multilayer perceptron on collaborative filtering
nd MF, which revisit the issues of proper hyperparameter selection, simple dot product, and the
roposed learned similarities. 
Finally, we give a summarization of the utilized context information to facilitate the factor-

zation process for recommendation. The social context [ 4 , 37 , 38 , 51 ] emerges the relationship
mong users which could enhance the recommendation by potential similar preference. Several
rior studies [ 9 , 10 , 14 , 20 , 31 , 39 , 40 , 43 , 45 , 50 ] discuss the influence on the recommendation
esults with the similarity context which implied the probability of the identical interest. In addi-
ion, many works [ 6 , 11 , 15 , 24 , 46 , 47 , 54 , 56 , 58 ] discuss the correlation among feedback context
nd the purchases for rating prediction. The integration of location information [ 35 , 53 ] also has
een introduced to recommend the spatial-awareness relative items. Since the preference usually
volves, several existing models [ 6 , 42 ] utilize the time factor to capture the dynamic variation for
ore precise recommendations. 

.2 CDR 

DRaims to enhance the recommendation quality by transferring knowledge from one (source)
omain to another (target) domain. With the information from source domain, CDR improves
he recommendations in the target domain. According to different transferring techniques, CDR
ethods can be divided into two categories: content-based and transfer-based . The content-based
DR methods extract common attributes of users and items and integrate user preferences from
ifferent domains. Berkovsky et al. [ 2 ] utilize cross-domain mediation of collaborative models
o address the data sparsity problem. Chung et al. [ 3 , 7 ] introduce an aggregation approach to
olve the collaborative filtering issues and improve the recommendation accuracy. Winoto et al.
 52 ] uncover the dependences of items and the relationships of user preferences across domains.
ernández-Tobias et al. [ 12 ] point out several difficulties in content-based CDR to apply in real
cenario and propose to utilize social tags to bridge the relationships between two domains. Tan
t al. [ 44 ] combine multi-type media information, such as media descriptions, text data, and ratings,
o transfer user interest cross domains and make recommendations. 

Transfer-based CDR methods address the data sparsity problem in recommendation by trans-
erring knowledge from an auxiliary source domain to the target domain. Different from the
ontent-based models, transfer-based approaches integrate user and item knowledge by trans-
erring learning the neural networks. Hu et al. [ 17 ] utilize multilayer feedforward networks with
ual connections and joint loss functions to enable dual knowledge transfer across domains by
ross connections from one base network to another. Li et al. [ 30 ] develop a novel cross-domain
ollaborative filtering via codebook-based knowledge transfer (CBT) , which transfers a user-
tem rating matrix from an auxiliary domain to the target domain. Chen and Chen [ 10 ] propose a
ransfer learning algorithm, which employs the common users and items as a bridge to link differ-
nt domains for knowledge transfer. Lu et al. [ 25 ] develop a CDR model to handle the problem that
he data from the source domain are not consistent with the observations in the target domain. Li
nd Tuzhilin [ 28 ] construct a novel approach based on dual learning with the bidirectional latent
elations between users and items. Liu et al. [ 26 ] utilize a graph collaborative filtering network
o achieve bidirectional transfer learning for recommendations. ATLRec [ 29 ] adopts adversarial
CM Trans. Internet Technol., Vol. 24, No. 1, Article 6. Publication date: February 2024. 
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Fig. 3. The framework of the CD-ELR recommendation system. 
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earning to obtain domain-sharable features for CDR. DMF-CDR [ 22 ] combines the collaborative
pproach and multilayer perceptron structures to learn the representation and offer more precise
ross-domain recommendations. Hong et al. [ 16 ] introduce a cross-domain deep neural net-

ork (CD-DNN) to jointly learn the features of users and items from both domains. 
The cold-start issue is a critical problem for traditional recommendation systems. CATN [ 59 ]

tilizes an attention mechanism to learn the aspect correlations extracted from review documents
or transfer to the target domain. A review-aware cross-domain recommendation algorithm

RACRec) [ 18 ] solves the fully-cold-start problem by combining a user’s preference vector with
 product’s feature vector to make the prediction. DCDIR [ 5 ] develops a meta-path method over
nsurance product knowledge graph and uses a feature mapping function to recommend products
o cold-start users in the target domain. ACDN [ 32 ] extracts latent features by an aesthetic network
nd integrates them across domains to transfer users’ aesthetic preferences. 

 CD-ELR RECOMMENDATION SYSTEM 

iven l domains D 

1 , . . . , D 

l , let U = { u 1 , u 2 , . . . , u m 

} be a set of users and V 

k = { v 1 , v 2 , . . . , v n } be

 set of items in domain D 

k . A rating record is a pair (r i j , t i j )
k where r i j and t i j denote the rating

alue and the rating time generated by user u i for item v j in domain D 

k , respectively. A rating

atrix R 

k (m × n) consists of all rating records (r i j , t i j )
k being generated by u i ∈ U in domain D 

k .

iven a rating matrix R 

k , the task of the recommendation system is to predict the rating value
 i j � R 

k , i.e., the items that have not yet been rated by users. 

Given rating matrices R 

1 , · · · , R 

k , · · · , R 

l in multiple domains, the objective of CD-ELR is to
nhance the recommendation quality in the domain D 

k by leveraging the richer information from
ultiple domains D 

1 , . . . , D 

k , . . . , D 

l . We could tackle the cold-start and sparsity issues with the
haring knowledge from discovered characteristics of users in multiple domains effectively. The
ystem framework of the proposed CD-ELR recommendation system for recommending users a set
f items is shown in Figure 3 . There are four components in the CD-ELR recommendation system:
1) feedback sequence transformation, (2) EMF, (3) fusing evolution learning, and (4) prediction
nd recommendation. 

.1 Feedback Sequence Transformation and EMF 

Definition 1 (Feedback Matrix and Sequence). Suppose a matrix R 

k including all rating records

r i j , t i j )
k in a domain D 

k , a feedback matrix M 

k 
s of timestamp s (supposed 1 ≤ s ≤ τ ) is a matrix

onsisting of all the rating value r i j , where t 0 ≤ t i j < t 0 + (s × Δt), 1 ≤ s ≤ τ . t 0 is the start time

nd time interval Δt is the user-specified time interval. The sequence M 

k , . . . , M 

k 
s , . . . , M 

k 
τ is called
1 

ACM Trans. Internet Technol., Vol. 24, No. 1, Article 6. Publication date: February 2024. 
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eedback sequence of domain D 

k . An updated matrix ΔM 

k 
s = M 

k 
s −M 

k 
s−1 contains all rating values

 i j that t 0 + ((s − 1 ) × Δt) ≤ t i j < t 0 + (s × Δt). The number of ratings in any M is denoted as | M | .

For preprocessing, each rating matrix R 

k is transformed into a feedback sequence consisting
f several smaller feedback matrices based on the rating time t i j of rating records. The feedback
equence could effectively express the evolution of rating behaviors and relations of users and
tems for further learning processes to construct the recommendation system. The pseudo code
s extended from [ 9 , 10 ] and given in Algorithm 1. According to the user-specified time interval
ength, we decompose R 

k into several smaller feedback matrices (lines 4–12, Algorithm 1). Notice
hat the feedback matrix is generated in an accumulated manner (lines 6 and 7, Algorithm 1). The
eedback matrix M 

k 
s+1 is derived by the union of the feedback matrix M 

k 
s and all the rating values

f rating records with the current time interval. Finally, we concatenate all feedback matrices to
erive a feedback sequence (line 9, Algorithm 1). After feedback sequence generation, CD-ELR
actorizes the feedback matrix to discover the latent preferences of users and the characteristics of
tems with a novel MF. 

In this article, we extend the method [ 9 , 10 ] and propose an effective method, called evolving

atrix factorization (EMF) , to efficiently decompose the latent features. As the feedback matri-
es in a feedback sequence are generated in a cumulative manner, EMF reuses the result obtained
n a matrix to facilitate the computation on the next matrix. 

Definition 2 (Preference and Characteristic Matrix). Let d -dimensional vectors p i and q j de-
ote the vector of latent preference for user u i and the vector of item characteristics for item
 j , respectively, in domain D 

k . P k (m × d) represents the preference matrix of all user latent

ectors p i , 1 ≤ p i ≤ m; Q 

k (d × n) represents the characteristic matrix of all item latent vectors
 j , 1 ≤ q j ≤ n. 

The main idea is extended from [ 9 , 10 ] for factoring a matrix more efficiently and effectively.
or M 

k 
s , if r i j is not in ΔM 

k 
s , obviously, we could know that it appears in M 

k 
s−1 . Thus, we directly

se the previously calculated results in M 

k . Since user u i does not rate item v j in time interval
s−1 

CM Trans. Internet Technol., Vol. 24, No. 1, Article 6. Publication date: February 2024. 
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 0 + ((s − 1 ) × Δt) ≤ t i j < t 0 + (s × Δt), the latent user preferences and item characteristics in M 

k 
s 

re the same as in M 

k 
s−1 as defined in Equation ( 1 ). 

If r i j � ΔM 

k 
s , p s i , q 

s 
j = p 

s−1 
i , q 

s−1 
j . (1)

However, if r i j is in ΔM 

k 
s , EMF needs to derive a new latent user preference p s i and item char-

cteristic q s j by minimizing the loss function in Equation ( 2 ). 

If r i j ∈ ΔM 

k 
s , 

p s i , q 
s 
j = argmin 

��� 1 ��ΔM 

k 
s 

�� ∑
r i j ∈ΔM 

k 
s 

(r i j − p T i q j )
2 
+ λp 

m ∑
i= 1 

| | p i | | 
2 + λq 

n ∑
j= 1 

| | q j | | 
2 ��	 , (2)

here λp and λq are two user-specified parameters. In this article, to
chieve efficient derivation, we utilize the gradient decent for opti-
ization in (2). We iteratively adapt p i and q j by Equation ( 3 ) and
quation ( 4 ): 

p � i = p 
�−1 
i − η ·

���− 2 ��ΔM 

k 
s 

�� ∑
r i j ∈ΔM 

k 
s 

q j (r i j − p T i q j ) + 2 λp p 
�−1 
i 

��	 , (3)

q � j = q 
�−1 
j − η ·

���− 2 ��ΔM 

k 
s 

�� ∑
r i j ∈ΔM 

k 
s 

p i (r i j − p T i q j ) + 2 λq q 
�−1 
j 

��	 , (4)

here � is the learning iteration index and η is the learning rate. Obviously, in Equations ( 3 )
nd ( 4 ), η could control how fast that p i and q j change to reduce the mean squared error in
quation ( 2 ). 

.2 Fusing Evolution Learning 

n the next step of CD-ELR, the discovered latent features (i.e., feedback matrix sequence) in all
omains are fed into the learning module to extract representative evolution behaviors, also called
atterns . To discover the latent user preferences, the series of factorized latent matrices is adopted
or modeling short- and long-term evolutions simultaneously. We borrow and extend the LSTM
odel for evolution learning. Intuitively, the patterns of variation in both user preferences and

tem characteristics could be captured by the recurrent component in LSTM architecture. 
We extend LSTM to propose a novel evolution learning model, called fusing evolution learning ,

o capture the complex evolving patterns of user interests and item characteristics. In each do-
ain, we feed the sequence of latent vectors (including user preferences and item characteristics)

actorized by EMF into the recurrent layer and output the hidden state step by step. The idea of
using evolution learning is illustrated in Figure 4 . The main learning component is the F-LSTM
n each domain. Different from the traditional LSTM, the memory cell in the proposed F-LSTM,
lso called long-term memory, contains the historical interactions of user preferences and item
haracteristics that reflect the long-term evolution. The hidden states are also referred to as the
hort-term memory of the latent vectors. During the processing, memory cell (long-term mem-
ry) captures the long-term evolution by memorizing the order of variations and the relationships
mong users and items. We decompose the memory cell into short- and long-term interests and
hen decay the long-term interest by the effect of current variation with an interval-aware weight
tility function which converts the evolution lapse into an appropriate weight. 
Obviously, how much the short- and long-term interests would contribute to recommendations

eavily depends on the degree of variations within the evolution. If a lot of new ratings appear in
ACM Trans. Internet Technol., Vol. 24, No. 1, Article 6. Publication date: February 2024. 
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Fig. 4. An example of evolving matrix factorization. 
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n update matrix (e.g., ΔM 

k 
s ), the user preferences and item characteristics may also have changed

 lot. In this case, the short-term interest should contribute more in the next item recommenda-
ion. On the contrary, if no new rating occurs in the update matrix, the user preferences and item
haracteristics would not change. Therefore, the recommendation should follow more based on
ong-term interest. As mentioned above, the relationships among users and items are a critical
ssue for recommending the “right” items to the “right” users. The proposed fusing evolution aims
o capture the evolution patterns in the user preference matrix and the item characteristic matrix
n all domains separately, but still incorporate the cross-relation among users and items which
eeds to be effectively learned and estimated. 
Consider a scenario of l domains D 

1 , . . . , D 

l . As shown in Figure 4 , each domain D 

k has a
-LSTM model to capture the evolutions of user preference and item characteristics. For each
-LSTM, at timestamp s (1 ≤ s ≤ τ ), the inputs consist of P k s (the preference matrix), Q 

k 
s (the char-

cteristics matrix), | ΔM 

k 
s | (the number of rating in the updated matrix), C 

k 
s−1 (memory cell for

he interactions of preference and characteristic history), and h 

k 
s−1 (previous output result). The

bjective functions of F-LSTM in domain D 

k are as follows. 

P s = W (P 1 s + · · · + P 
k 
s + · · · + P 

l 
s ) + b (5)

f k s = σ
(
W 

k 
f 

(
P s +Q 

k 
s 

)
+U 

k 
f h 

k 
s−1 + b 

k 
f 

)
(6)

i k s = σ
(
W 

k 
i 

(
P s +Q 

k 
s 

)
+U 

k 
i h 

k 
s−1 + b 

k 
i 

)
(7)

o k s = σ
(
W 

k 
o 

(
P s +Q 

k 
s 

)
+U 

k 
o h 

k 
s−1 + b 

k 
o 

)
(8)

Z 

k 
s = σ

(
W 

k 
Z 

(
P s +Q 

k 
s 

)
+U 

k 
Z 

h 

k 
s−1 + b 

k 
Z 

)
(9)
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k l 

s−1 = tanh 

(
W 

k 
l C 

k 
s−1 + b 

k 
l 

)
(10)

C 

k s 

s−1 = C 

k 
s−1 −C 

k l 

s−1 (11)

˜ C 

k l 

s−1 = γ (| ΔM 

k 
s | ) ◦C 

k l 

s−1 (12)

˜ C 

k 
s−1 = C 

k s 

s−1 +
˜ C 

k l 

s−1 (13)

C 

k 
s = f 

k 
s ◦

˜ C 

k 
s−1 + i 

k 
s ◦ Z 

k 
s (14)

h 

k 
s = o 

k 
s ◦ tanh (C 

k 
s ) (15)

e first concatenate and feed all user preferences P 1 s , . . . P 
k 
s , . . . P 

l 
s extracted from each domain into

n MLP network, named as fusion network , to derive a fused user preference P s in Equation ( 5 ). This
tep is called the fusing step . Notice that the dimensionality of the final fused vector P s is identical to
hose in the preference matrix P k s . Then, in each domain D 

k , we derive the necessary components

f the proposed F-LSTM. The forget gates f k s , input gate i k s , and output gate o k s , decide how much

nformation to be forgotten, input, and output in F-LSTM by Equations ( 6 )–( 8 ), respectively. Z 

k 
s is

earned from the inputs P s and Q 

k 
s , and the previous result h 

k 
t−1 in Equation ( 9 ). 

In this study, the memory cell in the proposed F-LSTM is decomposed into long- and short-term

nterests, C 

k l 

s−1 and C 

k s 

s−1 by Equations ( 10 ) and ( 11 ). This subspace decomposition plays a significant
ole in the model of fusing evolution learning. We segment the memory of the previous timestep
nto short- and long-term interests. Obviously, the short-term interest fits more for the current
ser preference; therefore, we keep the entire short-term interest C 

k s 

s−1 for prediction. However, the
ong-term interest may not thoroughly express the preference trend of users; we calibrate properly
ased on the amount of pdated records at timestep s . Intuitively, the more updated records, the
ore variations occur during the user preference evolution. Hence, the dependence on the long-

erm interest does not play a significant role in the prediction on the current output. The decay
ate γ in Equation ( 12 ) converts the number of updated entries in the updated user preference
nd item characteristics matrices into an appropriate weight in F-LSTM. The decay gate function
(x) = 1 /log (e + x) is a heuristic decaying function such that the larger the number of | ΔM 

k 
s |, the

esser the effect of the long-term memory. Hence, we derive the decayed long-term interests C 

k l 

s−1

y γ (| ΔM 

k 
s | ) in Equation ( 12 ). The short-term and decayed long-term interests are combined to

ompose the adjusted long-term memory as ˜ C 

k 
s−1 in Equation ( 13 ). Finally, in Equations ( 14 ) and

 15 ), we derive the new memory cell C 

k 
s and output h 

k 
s . 

When training the F-LSTM learning model in the proposed CD-ELR system, we first construct
he input instance for training, which is a set of vector sequences 〈 X 

1 , . . . , X 

s , . . . , X 

τ . When an
nput X 

s is fed into the model, the output is h s , where 1 ≤ s ≤ τ . h s also could be considered as the
rediction vector for the next timestamp. Hence, the error function is formulated by root mean
quare error (RMSE) between the predicted embedding vector h s and the actual embedding vector
 

s+1 as shown below.

E = 

τ∑
s= 1 

(h s − X 

s+1 )
2 

(16)

For the rating matrix R 

1 , . . . , R 

k , . . . R 

l of the training dataset, we transform each R 

k into a feed-
ack sequence M 

k 
1 , . . . , M 

k 
s , . . . , M 

k 
τ . Note that the feedback sequence is generated in a cumulative

anner. Then, we utilize the proposed EMF method to decompose each feedback matrix M 

k 
s into

he user preference matrix P k s and the item characteristics matrix Q 

k 
s . In each timestamp s , pref-

rence matrices P 1 s , . . . , P 
k 
s , . . . P 

l 
s from all domains are fused into one representative preference
ACM Trans. Internet Technol., Vol. 24, No. 1, Article 6. Publication date: February 2024. 
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Table 1. AMAZON [ 60 ] and FOXCONN Datasets 

Dataset #users #items #ratings Rating range 
AMAZON_Book 28,423 36,435 244,640 1–5 
AMAZON_Music 16,872 16,386 95,890 1–5 
AMAZON_Video 13,374 11,816 78,282 1–5 
FOXCONN_Movie 8,746 16,508 543,403 1–5 
FOXCONN_Drama 6,393 9,425 363,391 1–5 
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atrix P s . Clearly, there is one F-LSTM in each domain D 

k for evolution learning. The training
nstance is a vector sequence 〈 P 1 +Q 

k 
1 , . . . , P s +Q 

k 
s , . . . , P τ +Q 

k 
τ for F-LSTM. Then, we leverage

he mini-batch learning method to train the model on input instance until convergence. We take
 gradient step to minimize the error based on the h s and X 

s+1 . Notice that Adam optimizer is
dopted to tune the learning rate for discovering the optimal parameter settings in CD-ELR. 

.3 Recommendation 

fter successfully training the F-LSTM model, we derive the final output result for predicting
he user preferences and item characteristic in the next timestamp τ + 1 . For fusing evolution
earning, the output is P k τ+1 +Q 

k 
τ+1 in each domain D 

k . CD-ELR decomposes P k τ+1 +Q 

k 
τ+1 into two

atrices: user preference matrix P k τ+1 (m × d) and item characteristic matrix Q 

k 
τ+1 (d × n). As shown

n Equation ( 17 ), by multiplying P k τ+1 and Q 

k 
τ+1 together, we construct the prediction matrix R 

k ′ 

or domain D 

k as follows. 

R 

k ′ = P k τ+1 ×Q 

k 
τ+1 . (17)

he rating value r ′ i j ∈ R 

k but � R 

k ′ is referred to as the prediction value of user u i for item v j .

n domain D 

k , with predefined number N , for the query about user u i , CD-ELR lists the top- N
rediction values in the i th row of R 

k ′ to make the item recommendation for u i . 
Finally, we discuss the constraints of the proposed method. First, the transformed feedback se-

uence should be in a cumulative manner. Since LSTMs are designed to process sequential data, the
equential nature introduces dependencies between the elements in the sequence. The cumulative
eedback matrices in sequence could effectively facilitate the learning process of LSTM construc-
ion. Then, the rating scope should be fixed to a limited range. The rating scope is essential in MF
ince it affects the modeling and optimization process. Before applying MF, the input is necessary
o normalize the ratings to a common scale. The fixed rating scope ensures that the optimization
lgorithm operates effectively and that the ratings are comparable across users and items. 

 PERFORMANCE EVALUATION 

o validate the proposed CD-ELR in real-world environments, in this section, we conduct exper-
ments on two real datasets. The AMAZON dataset is collected from Amazon [ 60 ], the world’s
argest online marketplace that provides products and services. In this article, as summarized
n Table 1 , we consider three domains: Book, Music, and Video in AMAZON, in experiments.
MAZON_Book, AMAZON_Music, and AMAZON_Video contain customer id, product id, rat-

ng, and review date, where the period of data collection is 12 months (i.e., from Jan. 2014 to
ec. 2014). In addition, we perform intensive experiments on a dataset from Foxconn Corpora-

ion ( https://w w w.foxconn.com/ ), which is the world’s largest electronics manufacturer. The FOX-
ONN dataset is collected from a TV streaming service. 
The dataset, including two domains FOXCONN_Movie and FOXCONN_Drama, consists of user

d, video id, rating, genre, title, and watching time. The period of data collection is 12 months (i.e.,
CM Trans. Internet Technol., Vol. 24, No. 1, Article 6. Publication date: February 2024. 
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Table 2. Three Tasks for CDR from AMAZON [ 60 ] and FOXCONN Datasets 

TASK #common #items in #ratings in #items in #ratings in 

users source domain source domain target domain target domain 

Task 1 (B2M) 7,643 7,289 75,492 4,147 28,547 
Task 2 (B2V) 7,643 7,289 75,492 4,991 33,703 
Task 3 (M2D) 4,606 6488 110,567 4,621 86,786 
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rom Jan. 2018 to Dec. 2018). Due to the sparsity and the limitation of computational resource
memory limitation), by preprocessing, we filter out the users who interact with system less than
hreshold. Also, all items watched with less than threshold times are excluded. The summarization
f numbers of users, items, and ratings of all datasets are given in Table 1 . 
Then, we use three tasks to evaluate CDRs. Task 1 and Task 2 are set as Book → Music (B2M)

nd Book → Video (B2V) on the AMAZON dataset, respectively. We adopt common users in three
ifferent domains in the AMAZON dataset, i.e., users have rating records in AMAZON_Book,
MAZON_Music, and AMAZON_Video. In Task 1 (B2M), we take AMAZON_Book as the source
omain and AMAZON_Music as the target domain. In task 2 (B2V), we take AMAZON_Book as the
ource domain and AMAZON_Video as the target domain. There are 7,643 common users rating
tems in both domains in Tasks 1 and 2. Task 3 focuses on Movie → Drama (M2D) in the FOXCONN
ataset. In Task 3 (M2D), we take FOXCONN_Movie as the source domain and FOXCONN_Drama
s the target domain. There are 4,606 common users rating items in both domains. The details of
he three tasks are shown in Table 2 . 

To evaluate the effectiveness of the proposed method, we use two well-known metrics: root

ean square error at d (RMSE@ d ) and mean absolute error at d (MAE@ d ), respectively, where d is
he size of latent vector d . Notice that we set d = 30, 50, and 100 to compare the different results of
etrics at d . RMSE@ d and MAE@ d are used to evaluate the quality of the recommendation list.
MSE@ d is the average root square difference between the predicted values and the actual values.
ikewise, MAE@ d is the average absolute difference between the predicted ratings and the actual
atings. Both metrics are widely utilized to evaluate the quality of predicted results by a model or
n estimator. 

RMSE@ d = 

√ ∑n 
i= 1 (r i − ˆ r i )

2 

n 

(18)

MAE@ d = 

∑n 
i= 1 | r i − ˆ r i | 

n 

(19)

n Equations ( 18 ) and ( 19 ), n is the number of total predicted ratings, r i presents the predicted
ating of the user for the i th item, and ˆ r i is the actual rating of the user for the i th item. 

We demonstrate the performance of the proposed CD-ELR model in comparison with several
aseline methods, including the traditional collaborative filtering (CF) , MF, NMF [ 23 ], robust

atrix factorization (RMF) [ 24 ], EMCDR [ 33 ], and CoNet [ 17 ] as follows. 

—CF: The collaborative filtering method uses the derived similarity between users or items
to recommend related items for potential users. However, both user- and item-based CF
methods may suffer from sparsity and cold-start problems. 

—MF: A traditional MF method that predicts user ratings by learning the latent factors via
regressing over existing user-item ratings. Typically, the derivation of rating prediction is
SGD-based or ALS-based methods. 

—NMF [ 23 ]: A MF method focuses on the non-negative updated process depending on each

involved feature and the whole feature matrices. 
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Table 3. Recommendation Performance of RMSE on Task 1 (B2M) of AMAZON Dataset 

Task 1 (B2M) Source domain (Book) Target domain (Music) 
RMSE@100 RMSE@200 RMSE@300 RMSE@100 RMSE@200 RMSE@300 

CF 2.3189 2.3189 2.3189 2.6627 2.6627 2.6627 
MF 0.8889 0.8686 0.8453 1.0078 0.8829 0.8569 
PMF 0.8788 0.8248 0.8200 1.0229 0.9263 0.9244 
RMF 0.8954 0.8825 0.8738 0.9885 0.9329 0.9156 
EMCDR-LM 0.8511 0.8510 0.8172 0.7425 0.7410 0.7302 
EMCDR-MLP 0.8583 0.8564 0.8522 0.7416 0.7411 0.7402 
CoNet 0.8628 0.8628 0.8628 0.6392 0.6392 0.6392 
CD-ELR 0.6514 0.5563 0.5564 0.5428 0.5224 0.4969 

Table 4. Recommendation Performance with MAE on Task 1 (B2M) of AMAZON Dataset 

Task 1 (B2M) Source domain (Book) Target domain (Music) 
MAE@100 MAE@200 MAE@300 MAE@100 MAE@200 MAE@300 

CF 1.7178 1.7178 1.7178 1.9200 1.9200 1.9200 
MF 0.7123 0.6836 06721 0.8440 0.7541 0.7355 
PMF 0.7829 0.6933 0.6756 0.8535 0.8129 0.8129 
RMF 0.7165 0.6968 0.6913 0.8192 0.7955 0.7531 
EMCDR-LM 0.7689 0.7594 0.7602 0.6548 0.6548 0.6548 
EMCDR-MLP 0.7689 0.7681 0.7612 0.6546 0.5546 0.5546 
CoNet 0.7894 0.7894 0.7894 0.6001 0.6001 0.6001 
CD-ELR 0.5977 0.5239 0.5339 0.5144 0.4907 0.4580 
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—RMF [ 24 ]: A regularizing MF jointly decomposes the user-item interaction matrix and the
item-item co-occurrence matrix with shared item latent factors. 

—EMCDR [ 33 ]: An embedding framework adopts liner and multilayer perceptron as the
mapping function to capture the relation between the source and the target domain. Both
EMCDR-LM and EMCDR-MLP use MF and BPR as latent factor models applied with dif-
ferent mapping functions. 

—CoNet [ 17 ]: CoNet uses multilayer feedforward networks with dual connections and joint
loss functions to enable dual knowledge transfer across domains by cross connections from
one base network to another. 

All models are implemented in Python and Tensorflow, running on a workstation with i7-9700
PU, 64GB RAM, and two Nvidia GeForce RTX3090 GPUs. The evaluation results of three tasks
im to demonstrate the superiority and generalization of the examined recommendation systems.
or evaluating the recommendation results, we discuss several experiments and provide a real case
tudy in the following sections. 

.1 Analysis on Overall Performance 

n this section, we analyze the result in terms of RMSE@ d and MAE@ d as shown in Tables 3 –8 . To
valuate the performance, for traditional recommendation systems, including CF, MF, NMF, and
MF, we train them in each domain and derive the prediction results. Differently, for CDR systems,

ncluding EMCDR-LM, EMCDR-MLP, and CoNet, we train them in both of the source and target
omains and derive the prediction results in both domains. Notice that, according to the metrics
CM Trans. Internet Technol., Vol. 24, No. 1, Article 6. Publication date: February 2024. 
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Table 5. Recommendation Performance of RMSE on Task 2 (B2V) of AMAZON Dataset 

Task 2 (B2V) Source domain (Book) Target domain (Video) 
RMSE@100 RMSE@200 RMSE@300 RMSE@100 RMSE@200 RMSE@300 

CF 2.3189 2.3189 2.3189 2.2473 2.2473 2.2473 
MF 0.9889 0.9686 0.9453 0.9700 0.8777 0.8617 
PMF 0.8788 0.8248 0.8200 0.9369 0.9318 0.9319 
RMF 0.8954 0.8825 0.8738 0.9381 0.9352 0.9345 
EMCDR-LM 0.8511 0.8510 0.8172 0.7355 0.7321 0.7359 
EMCDR-MLP 0.8583 0.8564 0.8522 0.7402 0.7315 0.7337 
CoNet 0.8628 0.8628 0.8628 0.6222 0.6222 0.6222 
CD-ELR 0.6308 0.5570 0.5531 0.5849 0.5748 0.5588 

Table 6. Recommendation Performance of MAE on Task 2 (B2V) of AMAZON Dataset 

Task 2 (B2V) Source domain (Book) Target domain (Video) 
MAE@100 MAE@200 MAE@300 MAE@100 MAE@200 MAE@300 

CF 1.7178 1.7178 1.7178 1.6157 1.6157 1.6157 
MF 0.7123 0.6836 06721 0.8255 0.7639 0.7585 
PMF 0.7829 0.6933 0.6756 0.7956 0.7961 0.7929 
RMF 0.7165 0.6968 0.6913 0.7942 0.7937 0.7931 
EMCDR-LM 0.7689 0.7594 0.7602 0.6448 0.6410 0.6430 
EMCDR-MLP 0.7689 0.7681 0.7612 0.6305 0.6329 0.6336 
CoNet 0.7594 0.7594 0.7594 0.5864 0.5864 0.5864 
CD-ELR 0.5977 0.5139 0.5116 0.5144 0.4907 0.4780 

Table 7. Recommendation Performance of RMSE on Task 3 (M2D) of FOXCONN Dataset 

Task 3 (M2D) Source domain (Movie) Target domain (Drama) 
RMSE@100 RMSE@200 RMSE@300 RMSE@100 RMSE@200 RMSE@300 

CF 2.5330 2.5330 2.5330 2.7542 2.7542 2.7542 
MF 1.1763 1.1541 1.1539 1.3266 1.3025 1.3024 
PMF 1.1376 1.1355 1.1354 1.6445 1.6420 1.6420 
RMF 1.2541 1.2289 1.2273 1.7100 1.7023 1.7015 
EMCDR-LM 1.3267 1.3235 1.3196 1.4865 1.4732 1.4706 
EMCDR-MLP 1.2896 1.2788 1.2761 1.3323 1.3294 1.3294 
CoNet 1.0742 1.0742 1.0742 1.2670 1.2670 1.2670 
CD-ELR 0.8362 0.8279 0.8270 0.9391 0.9266 0.9266 
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a  
n Equations ( 18 ) and ( 19 ), the MAE value is the lower bound of RMSE value, i.e., the RMSE value
s always larger and equal than the MAE value. 

Comparing with all models, including traditional and CDR systems, we observe that the pro-
osed CD-ELR performs significantly better than all baselines due to its powerful cross-domain
ransferring ability. As shown in Tables 3 and 4 , in Task 1 (B2M), CD-ELR significantly outperforms
he traditional baselines of CF and MF models, and also performs better than the single-domain
MF and PMF models. Compared with CDR models, in the AMAZON_Book domain (the source
omain in Tasks 1 and Task 2), the CD-ELR models outperform the EMCDR-LM, EMCDR-MLP,
nd CoNet models by 32%, 35%, and 36% on RMSE, respectively. Similarly, in the FOXCONN_Movie
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Table 8. Recommendation Performance of MAE on Task 3 (M2D) of FOXCONN Dataset 

Task 3 (M2D) Source domain (Movie) Target domain (Drama) 
MAE@100 MAE@200 MAE@300 MAE@100 MAE@200 MAE@300 

CF 1.8474 1.8474 1.8474 1.9252 1.9252 1.9252 
MF 0.8466 0.8251 0.8235 0.9893 0.9866 0.9866 
PMF 0.8863 0.8801 0.8796 1.1286 1.1263 1.1258 
RMF 0.9036 0.9021 0.9018 1.1327 1.1300 1.1300 
EMCDR-LM 1.0173 1.0146 1.0132 0.9368 0.9271 0.9270 
EMCDR-MLP 0.9983 0.9972 0.9953 0.9251 0.9230 0.9230 
CoNet 0.8165 0.8165 0.8165 0.8857 0.8857 0.8857 
CD-ELR 0.7274 0.7260 0.7261 0.7998 0.7962 0.7958 
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omain (the source domain in Task 3), CD-ELR models also outperform the EMCDR-LM, EMCDR-
LP, and CoNet models by 38%, 36%, and 24% on RMSE, respectively. The result shows that CD-

LR uses the information from the target domain to improve the recommendation quality in the
ource domain due to the proposed idea of multidirectional transferring. 

It is not surprising that there is a performance improvement of CD-ELR over existing single-
omain models since CD-ELR has more capability in transferring knowledge learned in all different
omains. In each domain, CD-ELR learns and captures the user preference and item characteristic
atterns simultaneously. In addition, we propose a fusing component to integrate user preference
ectors in all domains. Hence, the results in Tables 3 , 5 , and 7 depict the significant improvement
f recommendation quality. Specifically, in Task 3 (M2D), CD-ELR outperforms the single-domain
ecommendation models CF, MF, PMF, and RMF by 78%, 29%, 28%, and 19%, respectively. Also, we
bserve that the proposed CD-ELR leverages the irregularity of preference and characteristic of
he transition context, which is more effective than the baselines in capturing the variation effects
etween consecutive feedback matrices. 
Next, we discuss the impact of domain transferring. As shown in Tables 3 and 4 , in the AMA-

ON_Music domain (the target domain) of Task 1 (B2M), the proposed CD-ELR has improved the
erformance more than 30% as compared to other CDR models in general. Similarly, as shown in
ables 5 and 6 , in the AMAZON_Video domain (the target domain of Task 2 B2V), CD-ELR outper-
orms the EMCDR-LM, EMCDR-MLP, and CoNet models by 25%, 24%, and 11%, respectively. These
esults validate the effectiveness of the proposed cross-domain method CD-ELR which transfers
he knowledge from data-rich domains to improve the performance of recommendations in the
ata-sparse domain. The same observations appear in the FOXCONN dataset. As shown in Tables 7
nd 8 , for both Movie and Drama domains in Task 3 (M2D), CD-ELR improves the recommenda-
ion quality over all baselines. For the Drama domain (the target domain), the recommendation
esults show the importance of preference evolution and domain transferring which influence the
ccuracy of recommendation. 

In particular, CD-ELR decays the content of long-term interest by employing the variation be-
ween sequential elements. Different from previous studies, we improve the performance without
eeding extra information or learning additional neural networks to affect the output prediction.
ue to the sparse nature of the rating system, the same contexts (time difference) may have differ-

nt impacts on different datasets. Instead of using the static weight decay function, in CD-ELR, we
ntegrate the dynamic learning context weight for variation contexts. As shown in Tables 3 –8 , we
nd that with dynamic learning context weight by CD-ELR, the results in terms of accuracy are

mproved over existing CDR models. This indicates that the proposed CD-ELR is able to leverage
CM Trans. Internet Technol., Vol. 24, No. 1, Article 6. Publication date: February 2024. 
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Fig. 5. The effectiveness of variation transition context in CD-ELR. 
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he dynamic learning context weight of variation transition contexts to enhance the accuracy.
inally, we observe that CD-ELR improves over 15% comparing with both EMCDR methods and
oNet, which indicates the integration of the user preference from domains and the incorporation
f dynamic evolution significantly enhance the learning process for recommendation. 

.2 Analysis on Overall Performance 

s shown in the above experimental results, CD-ELR outperforms all baseline models. In this sec-
ion, we analyze the improvement in incorporating rating variation differences between successive
eedback matrices. In CD-ELR, different from traditional RNN learning, there are two decomposi-
ions of memory cell to represent long-and short-term interests. We capture user long-term interest
y memorizing not only the order of user’s historical ratings, but also the difference in the number
f ratings between two consecutive feedback matrices. Meanwhile, we dynamically learn to give
 proper decay weight to each context in the long-term interests. Normally, the long-term interest
ffects the determination of a user’s choices which heavily depend on the difference in the num-
er of ratings between the current and the next feedback matrices. Intuitively, the more ratings,
he more significant role the short-term interest plays. Hence, we use the variation of ratings to
ontrol the contribution of long-term interests in memory cell by learned decay gate. 

The effectiveness of integrating the transition context of the number of rating variation is also
nvestigated in this section. In order to explore the improvement of variation context on discounted
ong-term memory, we compare CD-ELR equipped with the proposed delta differences decay and
ithout delta differences decay. As shown in Figures 5 (a), (b), and (c), CD-ELR has significant

mprovement in RMSE with different d on average by 10%–30% on the three tasks as compared with
D-ELR (without Δ), which means that the context is critical for improving the recommendation
erformances. 

.3 The Ability and Influence of Cross-Domain Transfer 

n this section, we evaluate the effectiveness of cross-domain communication. In this article,
e introduce a novel concept of multidirectional transfer. In the proposed CD-ELR, we could
ACM Trans. Internet Technol., Vol. 24, No. 1, Article 6. Publication date: February 2024. 
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Fig. 6. Performance comparison with difference fusion status. 
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ncorporate all user preferences in all domains. To analyze the ability of cross-domain transfer,
e evaluate the CD-ELR by varying the number of cross-domain transfers in the fusing step. To
bserve the influence and ability of multidirectional transfer, CD-ELR is designed to equip in four
ases of fusing steps. 

—Complete-Fusion (C-F): CD-ELR combines all preference vectors in all domains of all times-
tamps. For each timestamp, we feed the preference vector in each domain into the MLP
network in Equation ( 5 ) to derive the fused preference vector, i.e., P s = W (P 1 s + · · · + P 

k 
s +

· · · + P l s ) + b, 1 ≤ s ≤ τ . 
—Half-Fusion ( 1 /2 -F): For half of the timestamps, CD-ELR combines preference vectors in all

domains, i.e., s = { 1 , 3 , 5 , 7 , . . . }. 
—One-Third-Fusion ( 1 /3 -F): We only combine preference vectors from all domains in one-

third of the timestamps, i.e., s = { 1 , 4 , 7 , 10 , . . . }. 
—No-Fusion (0-F): CD-ELR does not combine any preference vector in each domain for each

timestamp. 

As shown in Figure 6 , for Tasks 1–3, we observe that the recommendation quality is signif-
cantly improved. In both the source and the target domains, the RMSE metric increases when
e decrease the number of preference vector fusions. CD-ELR achieves the best recommendation

ccuracy under the setting of complete fusion. Clearly, the cross-domain transfer affects the rec-
mmendation in the target domain more than in the source domain. Especially in Tasks 1 and 2
shown in Figures 6 (a) and (b)), we find that complete-fusion improves more than 30% in terms
f accuracy than no-fusion. The result is reasonable since the information and knowledge ex-
racted from the source domain usually are much richer than when extracted from the target do-
ain. From the experiment, we demonstrate the ability of cross-domain transfer in the proposed
D-ELR model. 
The influence of the fusion network for combining the preference vector in each domain is

lso discussed to conduct the ability of cross-domain transfer. We concatenate and feed all user
references P 1 s , . . . P 

k 
s , . . . P 

l 
s extracted from each domain into a fusion network to derive a fusing

ser preference P s in Equation ( 5 ). Obviously, the MLP network dominates the fusion performance.
n Figure 7 , we show how the number of layers in the fusion network affects the performance of
D-ELR models in terms of the RMSE metric. Notice that the lower the RMSE value the better

he accuracy performance. Definitely, the number of layers determines the model complexity. The
CM Trans. Internet Technol., Vol. 24, No. 1, Article 6. Publication date: February 2024. 
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Fig. 7. Performance comparison with different number of layers in fusion network. 

Fig. 8. Case study on effectiveness of cross-domain transfer. 
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eeper network structure fits the data better. One interesting point is that when we increase more
han eight layers, the performance does not improve any further. Definitely, the number of neurons
lso dominates the impact of the final fusion results. We adopt more neurons in the fusion network
hen the network includes more layers. It is clearly found that CD-ELR has the better result when

he fusion network has more neurons. The result is straightforward and makes sense, since the
usion network with few layers and neurons may not have the ability to capture the fusing pattern
or precise recommendation. 

.4 Case Study 

o demonstrate the practicability and performance of the proposed recommendation system, CD-
LR is applied on the real dataset AMAZON [ 60 ] to show the recommended results. We take
everal users’ recommended lists in Tasks 1 and 2 to discuss the highlights of CD-ELR. Figures
 and 9 show the top- N ranked books recommended by CD-ELR after the model is well trained
or a specific user. Note that the particular user sequence is randomly chosen from the testing
ataset. 
First, we show the effectiveness of cross-domain transfer in CD-ELR, and we utilize buying

ehaviors in two different domains as an example. As shown in Figure 8 , two rating sequences
f the user (id = 50,833,412) in the book domain and the music domain are b 1 (Loving Frank),
 2 (True Compass: A Memoir), b 3 (Jim Henson: The Biography), b 4 (Color Blind ) and m 1 (Hooked
n Themes), m 2 (Holiday Sprits ), respectively. Without any doubt, CD-ELR utilizes and commu-
icates the knowledge between both domains. In the book domain, the top-three books we recom-

end are { ̂  B 1 (Twenty-Five Milk Runs), ˆ B 2 (Lincoln), ˆ B 3 (The Shack)}. We could observe that the
ACM Trans. Internet Technol., Vol. 24, No. 1, Article 6. Publication date: February 2024. 
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Fig. 9. Case study on influence of preference evolution. 
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nformation from the music domain enhances the rating prediction; CD-ELR hit the ground truth
 5 (Twenty-Five Milk Runs: The Biography). In addition, in the music domain, the top-three mu-

ic recommendations from CD-ELR to user are { ˆ M 1 (Hooked on Swing), M 2 (Tuskegee), ˆ M 3 (One
ight in Central Park)}. CD-ELR also hit the ground truth m 3 (One Night in Central Park) due to

he assistance from the knowledge in the book domain. Nevertheless, as in the aforementioned
iscussion, traditional cross recommendation systems (i.e., EMCDR and Conet) only consider the
nowledge transfer from the source domain to the target domain, but not vice versa. The informa-
ion in the book domain could help the system recommend potential items more precisely in the
usic domain but could not improve the recommendation quality in the book domain. Hence, the

ecommendation results for books do not have any improvement from knowledge in the music
omain as shown in Figure 8 . 
Then, we discuss the influence of preference evolution in the proposed CD-ELR. As shown

n Figure 9 , for a user (id = 50,732,546) in the Amazon database, the rating sequence con-
ists of seven books: b 6 (Colby Conspiracy), b 7 (The Winter Road), b 8 (Learning Curves), b 9
Not Without Her Son ) which are rated in 2005, and b 10 (Come Away with Me), b 11 (Cold Hearts),
 12 (Feels Like Family ) which are read in 2015. When feeding the rating sequence, for our CD-ELR,

he top-three recommendation results ranks as { ̂  R 1 (A Little Bit Country), ˆ R 1 (Starlight on Willow

ake), ˆ R 3 (Tough Love: An Anthology)}. We find that CD-ELR could hit the ground truth; the ac-
ual succeeding books are { b 8 (Thrill Me), b 9 (Starlight on Willow Lake)}. Obviously, all books in

he recommendation list of CD-ELR are very similar; ˆ R 1 , ˆ R 2 , and 

ˆ R 3 belong to the romance genre.
owever, with the same rating sequence, traditional MF and CF recommendation systems will rec-

mmend { ̂  R 

′ 
1 (Tough Love: An Anthology), ˆ R 

′ 
2 (The Song of Achilles), ˆ R 

′ 
3 (The First Heroes)} which

elong to the romance and literature genres as the top-three ranking. Clearly, the result could not
atch the ground truth. From the example, we could find the influence of preference evolution

or recommendation. The recommended result shows the ability and performance of the proposed
D-ELR on the sequential recommendation with preference evolution. 
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 CONCLUSION 

wing to the popularity of e-commerce and online activities, a recommendation system plays a
ore and more important role for users quickly finding out potentially interesting items from
assive amounts of merchandise. In this study, to tackle the cold-start and sparsity issues, a
ovel cross-domain recommendation model, CD-ELR, is developed to communicate the informa-
ion from different domains by integrating the MF and RNN. We introduce an EMF to efficiently
ecompose the rating matrix in a dynamic manner. Furthermore, a novel F-LSTM model is de-
eloped to fuse the discovered evolution patterns of user interests in multiple source domains to
nhance the recommendation result of a target domain with several optimization techniques. The
xperimental results show that CD-ELR outperforms prior state-of-the-art recommendation base-
ines on several evaluation metrics. Finally, we conduct some case studies on a real-world dataset
o demonstrate the practicability of the proposed CD-ELR. 
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